
The DLV Project:
A Tour from Theory and Research

to Applications and Market
Nicola Leone

Department of Mathematics
University of Calabria

leone@unical.it

Joint work with
W. Faber, G. Pfeifer, T. Eiter,
and about 20 other contributors

http://www.tcs.hut.fi/Software/gnt/
http://www.tcs.hut.fi/Software/gnt/

Roadmap
DLP with Stable Model Semantics
The DLP System DLV (main features)
A Flavour of the DLV Language
DLV History
Some Lessons Learned while Developing DLV
Industry-level Applications
Market Perspectives
Conclusions

Disjunctive Logic Programming
with Stable Model Semantics

(DLP)

DLP Programs

Rule: a1 ∨ … ∨ an :- b1,…, bk , not bk+1,…, not bm

Constraint: :- b1,…, bk , not bk+1,…, not bm

Program: A finite Set P of rules and constraints.

ai bi are atoms
variables are allowed in atoms’ arguments

mother(P,S) v father(P,S) :- parent(P,S).

A program with variables is a shorthand for its ground instantiation

Informal Semantics

Rule: a1 ∨ … ∨ an :- b1, …, bk , not bk+1 , …, not bm

If all the b1 …bk are true and none of bk+1 … bm is true,
then at least one among a1 …an is true.

isInterestedinDLP(john) v isCurious(john) :- attendsDLP(john).
attendsDLP(john).

Two (minimal) models, encoding two plausible scenarios:

M1: {attendsDLP(john), isInterestedinDLP(john) }

M2: {attendsDLP(john), isCurious(john) }

Integrity Constraints

Discard interpretations which verify the condition

Rules usually construct the models.
Integrity constraints can be used to eliminate models

 :- L1, … , Ln.

Meaning: discard interpretations in which L1, … , Ln are simultaneously
true.

Stable Model Semantics

Positive Programs:
M is a stable model if it is a minimal model

General Programs (with negation):
M is a stable model if it is a minimal model of the GL-reduct

3-colorability
Input: a Map represented by state(_) and border(_,_).
Problem: assign one color out of 3 colors to each state such that two

neighbouring states have always different colors.

Solution:
col(X,red) ∨ col(X,green) ∨ col(X,blue) :-state(X). } Guess

:- border(X,Y), col(X,C), col(Y,C). } Check

The DLP System DLV

Main Features

Advanced Knowledge Modeling Capabilities (1)

Language:
Disjunctive Logic Programs with Stable Model Semantics
Extension with aggregates, weak constraints, functions, lists, sets...

High Expressiveness:
 Captures ΣP

2 (NPNP)
 Able to represent complex problems not (polynomially) translatable to

SAT or CSP

Advanced Knowledge Modeling Capabilities (2)

Full Declarativeness:
 Rules ordering and goals ordering is immaterial
 Computation is sound and complete
 Termination is always guaranteed

Front ends for AI applications
 Planning
 Diagnosis
 Ontology representation and reasoning
 ...

Solid Implementation

 Database Optimization Techniques
 Join Ordering Methods
 Magic Sets
 Indexing

Search Optimization Methods:
Heuristics
Backjumping
Pruning Operators

Interoperability

Semantic Web Reasoners
 Integrate ontologies and rules

Relational DBMSs
 Powerful reasoning on top of data stored in databases

C++ programs
 Call C++ (application specific) functions from DLP programs

JAVA programs
 Call DLV from JAVA programs

System Architecture

Diagnosis
Frontend

Filtering

Model
Checker

Model
Generator

Intelligent
Grounding

Inheritance
Frontend

Brave/Cautious
Frontend

SQL3
Frontend

User Interface

Output

Ground
Program

File
System

Ground
Program

Relational
Database

ODBC

A Flavour of DLV Language

Weak Constraints: Exams Scheduling
1. Assign course exams to 3 time slots avoiding overlapping of exams of courses with
common students

r1: assign(X,s1) ∨ assign(X,s2) ∨ assign(X,s3) :- course(X).
s1: :- assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.

1. If overlapping is unavoidable, then reduce it “As Much As Possible” –
Find an approximate solution

r2: assign(X,s1) ∨ assign(X,s2) ∨ assign(X,s3) :- course(X).
w2: :~ assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0. [N:]

Scenarios (models) minimizing the total number of “lost” exams are preferred.

Aggregate Functions: Team Building

p1 The team consists of a certain number of employees

p2 At least a given number of different skills must be present in the team

p3 The sum of the salaries of the employees working in the team must not exceed the given
budget

p4 The salary of each individual employee is within a specified limit

in(I) v out(I) :- emp(I,Sx,Sk,Sa).

:- nEmp(N), not #count{ I : in(I) } = N.

:- nSkill(M), not #count{ Sk : emp(I,Sx,Sk,Sa), in(I) } ≥ M.

:- budget(B), not #sum{ Sa, I : emp(I,Sx,Sk,Sa), in(I) } ≤ B.

:- maxSal(M), not #max{ Sa : emp(I,Sx,Sk,Sa), in(I) } ≤ M.

Functions and Lists: Simple Paths

A simple path of a graph is a path without any node repetition.
A DLV program computing simple paths.

simplePath([X,Y]) :- edge(X,Y), X≠Y.

simplePath([X|W]) :- edge(X,Y), simplePath(W),
#head(W,Y), not #member(X,W).

alternative encoding:

simplePath([X|[Y|T]]) :- edge(X,Y), simplePath([Y|T]),

 not #member(X,[Y|T]).

Infinitely large Herbrand models, but stable models are finite

DLV computations are sound and complete here

Don’t miss Ianni’s presentation on Thursday!

DLV History

DLV History (1)
1992 Algorithm for computation of the well-founded model

of V-free programs
[_, Rullo, Information Systems, 1992]

1993 Algorithm for computation of the stable models of
V-free programs

[_, Romeo, Rullo, Sacca`, Logidata 93]

1995 Algorithm for computation of the stable models of
general disjunctive programs

[_, Rullo, Scarcello, ILPS 95][_, Rullo, Scarcello, Inf&Comp 97]

1996 (november) DLV project starts in Vienna

DLV History (2)

1997 (july, lpnmr) 1st Release of DLV
First implementation of a Stable Model System for (standard) DLP
3COL: Smodels 0.27 secs, DLV killed after 2 hours!

1998 (june, KR) 5th Release of DLV
Competitive with Smodels and DeRes
Very efficient on Deductive Database Applications

1998 --> 2007 29 Releases
A lot of improvements in all modules
Many linguistic extensions (aggregates, weak constraints,....)

2007 (lpnmr) DLV wins in the ASP System Competition
1st in the DLP Category
1st in the MGS (“Royal”) Category

2008 DLV widely used in academy, interest in industry

Some Lessons Learned
while Developing DLV

Some Lessons Learned (1)

LANGUAGE

As standard as possible
 Do not re-invent the wheel!

Make an extension only if it is strongly motivated

Define a clear and intuitive semantics

Study language properties in depth

Some Lessons Learned (2)
EFFICIENCY

In-depth complexity analysis
Single out tractable cases
Handle them suitably

Data Structures

Heuristics and Optimizations techniques

Benchmarking, a lot of benchmarking

Some Lessons Learned (3)

For wide dissemination and usage

User friendly interfaces

Interoperability mechanisms

Tools for development
 Error Messaging
 Debugger

Industry-level Applications

Industry-level Applications
Application Area: Knowledge Management

In the “Society of Knowledge” there is an increasing demand of methods and
powerful tools for Knowledge Representation and Management

DLV-based systems/applications for:

 Ontology Representation and Reasoning
 OntoDLV System

 Semantic Information-Extraction
HiLex System

 Text Classification
Olex System

 Data Integration

Data Integration System
 Offers a global view and a uniform access to a set of

autonomous and heterogeneous sources

Application

When the user issues a query over the global schema, the
system:

• determines which sources to query and how
• issues suitable queries to the sources
• assembles the results and provides the answer

Global Schema

PROBLEM: The integration of local data
from autonomous DBs can violate the global
constraints

Repair techniques are needed to
provide consistent answers!

Logic Programming for DIS

Basic Idea:
Map Data Integration System specifications into DLP programs
Consistent query answering coincides with cautious reasoning on

DLP programs
DLV becomes the core for the computation

Advantages of the Approach
executable specification of semantics (easy to change)
obtain the needed computational power

Query answering is co-NP for Keys alone!

Performances (1/2)
DEMO scenario:
 information about students, courses, professors,

exams ... at University of Rome “La Sapienza”

 ~40 Wrappers (query wrapper, visual wrappers)

 3 legacy databases (MySQL), lots of web pages

 Global schema: ~ 15 relations, 30 constraints
(KDs,IDs,EDs)

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Impact of Optimization

0,00

5,00

10,00

15,00

20,00

25,00

Execution Time [seconds]

Magic Sets 4,90 4,20 7,70 4,80 5,80 0,08 23,00 0,81 0,81
No Optimization 129,00 12,93 7,90 6,68 9,70 0,08 197,00 0,78 0,78

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Performances (2/2)

0

50

100

150

200

250

0 200000 400000 600000 800000 1000000

without Magic with Magic

Scaling

DEMO scenario:
 information about students, courses, professors,

exams ... at University of Rome “La Sapienza”
 ~40 Wrappers (query wrapper, visual wrappers)

 3 legacy databases (MySQL), lots of web pages
 Global schema: ~ 15 relations, 30 constraints

(KDs,IDs,EDs)

Market Perspectives
First results are promising: a lot of interest in the area of Knowledge

Management (KM)

EXEURA (spin off University of Calabria)
Consulting on “Semantic Technologies”

Using OntoDLV, HiLex, Olex
Already 30 permanent employees
Branch in Chicago

DLVSYSTEM
Founded by the DLV team
DLV engineering and maintenance
“A door where to knock on” if a problem surfaces
Fast bug fixing
Implementation of required extensions

Conclusions
 A lot of work in 12 years

 For building the theoretical foundations of DLV
 For implementing and maintaining the system

But the gratification is even higher
Appreciation in the research community
More than 30 journal papers and 100 conference papers related to DLV
DLV widely disseminated throughout the world
We are contacted nearly every week by DLV users
The first tries of DLP exploitation for Knowledge Management stimulated some
interest in industry

The feedback “from the field” suggests challenging issues for both the
theory and the system: we’ll do our best to improve
DON’T MISS THE NEXT RELEASE OF DLV!

Ontology Representation and Reasoning:
the OntoDLV System

Ontology Representation and Reasoning

The strong need of knowledge-based technologies is perceived by
industries today

The Description Logic (DL) community did a very good job in
divulgating and advertising OWL as the language for Ontologies

OWL is a W3C standard

Many companies invest in OWL and try to use it also for
enterprise/corporate ontologies

Ontology Representation and Reasoning
OWL semantic assumptions are fine for the Semantic Web

Some semantic features of OWL (especially the Open-World assumption) make it
unsuited for enterprise/corporate ontologies

enterprise ontologies often extend the enterprise databases

List the suppliers whose branches are only in Naples
In ASP (according with the Closed World Assumption)
 answer = {voiello}

In OWL (according with the Open World Assumption)
you cannot entail that voiello has only a branch in Naples,
since you assume that, e.g., supplier(voiello,rome,veneto) may hold but it is
presently unknown
answer = {}

cavournaplesvoiello
plebiscitonaplesbarilla
venetoromebarilla

branch streetbranch citysupplier

An ASP-based Ontology
Management System

OntoDLV

What is it?
 Advanced platform for ontology management

Specification
Browsing
Querying
Reasoning

Powerful and user-friendly visual environment
Advanced visual querying interface (à la QBE)
Automatic Error Detection (advanced type checking)
Application Programming Interface (API)

Able to deal with data-intensive applications
Persistency on DBMS
Can work in mass-memory (via DLVDB)

 Based on a DLP extension named OntoDLP

OntoDLV is our computational core
Olex - the text classification system, and
Hilex - the semantic information-extraction system

are built on top of OntoDLV

OntoDLV is well suited also for direct application-
development

The RAP platform (Orangee):
Governance of the distribution process of antiblastic medicines
in hospitals
Agent-Based (JADE <--> OntoDLV API)
“The agent’s brain” is an OntoDLP program

Semantic Information Extraction:
the HiLex System

What is HiLex?
An Advanced Tool for Semantic Information-Extraction

Ontology Driven
Exploits an OntoDLP ontology of the domain

Recognition of “Semantic” Regular Expressions
representing ways of writing a concept in a document

elements of the expression can be concepts specified through queries over the
ontology (e.g., any member of a class)

the concepts which are recognized in the document are stored in the OntoDLV
ontology

Rewriting to DLP
Information Extraction amounts to Stable Model Computation

Example

Example
stock_index_table: stock_index_structure (
 type: hilex_type,
 expression: “tableOf (arg: [@stock_index, unsigned_float,

 signed_float, percentage], range: {3, },
 dir: vertical, sep: blank_char),

 label: “table of stock_index_variation_row").

techStar unsigned_float signed_float percentage

dowJones unsigned_float signed_float percentage

dasdaq unsigned_float signed_float percentage

TechStar

Dow Jones

Nasdaq

8.088,00

10.192,51

1.921,65

+51,00

0,00

0,00

+0,63%

0,00%

0,00%

Example

An HiLex Application: automatic extraction of
information from balance notes

A company provides financial information to banks
The balances of all italian companies are analyzed
(~800,000 per year in PDF format)
Balance sheets contain important information also in
attached notes written in natural language

HiLex application
input PDF balances are mapped to HTML
Hilex extracts the information from the balance notes
and stores them in a relational database
about 90% successful extractions

Automatic extraction of information from
balance notes: the process

Input
Ontology
Descriptors

Company 1 Company 2 Company n

Input
Balance
Sheets

TAB separated table Standard table Pivot table with null values

DB
Output database

Text Classification:
The Olex system

The Classification Problem

Given a set C = {c1, . . . , cm} of categories,
and a set D = {d1, . . . , dn} of documents,
assign to each document its category(/ies)

Typical example:
Classify Reuters’ news according to their contents

Olex Classifier
Exploitation of Default Negation

Classifier: set of classification rules
C  t0, not t1, …, not tn

One positive literal and (zero or) more negative literals

Intuitively:
Positive atoms allow us to catch most of the right
documents (thus, providing high “recall”)

Negative atoms help us in avoiding “too many” mistakes
(thus, providing high “precision”).

Learning and Classification

LEARNING PHASE
On a training set of documents

Transform the document in logical facts
Select the discriminating terms
generate the classifier (an OntoDLP program)
Validate the classifier (OntoDLV run)

CLASSIFICATION PHASE
Run the classifier on the (OntoDLP version of the) input documents
Classify them according to the resulting answer sets

Experimental Results

Olex has been tested on two well-known corpora:
 Reuters (ModApte split):

 7,063 articles in the training set,
 2,742 articles in the test set,
 118 categories

 OHSUMED:
 20,000 documents,
 23 categories

Olex works efficiently and with a very good precision

Is there a market for these ASP applications?

First results are very promising; a lot of interest in the area of
Knowldge Management (KM)

Exeura (spin off University of Calabria)
Consulting on exploiting ASP (/DLV) for KM
Already 30 permanent employees

FourthCodex: Joint venture between Exeura (Calabria) and
Herzum (Chicago)

Industrial development of the 4 KM products
Distribution in the US market
Some license already given, interest from big companies

Is there a market for these ASP applications?

In order to employ DLV in industrial applications,
companies wanted the warranty that DLV is maintained
 “A door where to knock on” if a problem surfaces
 Fast bug fixing
 Implementation of required extensions

Creation of company DLVSYSTEM to play this role
 DLV engineering and maintenance

Future Directions

What lessons have we learned on the field?

What are the main challenges?

Lessons Learned (1)

Engineers often are unable to write
(correct and efficient) ASP Programs

Application programs are frequently “easy” (stratified
or nearly such); but have to deal with HUGE amount of
data

Input data often in databases or on the web

Lessons Learned (2)

Language expressiveness of ASP is more than enough for many
applications; but some “practical” features are missing
 Application specific functions
 Data Types (data and methods)

floating-point numbers
strings
date and currency

Other aggregate functions (e.g., Average)
Lists and Sets

ASP systems are mostly used as the “intelligent” engine of an
ample software architecture

Challenges (1)

1. Engineers often are unable to write (correct and
efficient) ASP Programs

Develop tools for programmers
Programming Environments
Debuggers (tools and techniques)
Friendly Interfaces

Design ASP programming methodologies

Challenges (2)

2. Application programs are frequently “easy” (stratified or
nearly such); but have to deal with HUGE amount of data

Improve the ASP instantiators

Database technologies

Mass memory computation

Partial evaluation techniques

More on Magic Sets

Challenges (3)

3. Input data often reside on databases or on the web

Interoperability with DBMSs

Interoperability with OWL/RDF

Technological and theoretical issues

Challenges (4)
4. Language expressiveness of ASP is even more than enough; but some

“practical” features are missing
- Application specific functions
- Data Types (data and methods)

- floating-point number, strings, dates,...
- Other aggregates functions (e.g., Average)
- Lists and Sets

Not easy at all, semantic and implementation issues
Dealing with infinite domains
Inside ASP systems or on top?

Challenges (5)

5. ASP systems are mostly used as the “intelligent”
engine of an ample software architecture

Application Programming Interfaces (API)

Mechanisms and tools for interoperability

Conclusion

After more than 20 years of theoretical research, serious efforts on
implementation have been done, and efficient ASP systems are
available, making ASP viable for applications

Our first tries of ASP exploitation in Knowledge Management
stimulated much interest in industry

We are having feedback “from the field”, suggesting challenging
issues for both theory and systems

I encourage other groups to “attack” real applications:
 quite some work;
 but also big fun!!

A sample case:
The development of aggregates

Aggregate functions
emp(EmpId, Salary)

Compute the sum of the salaries of the employees

• Easily expressed in SQL

• Representation in logic is rather unnatural

 – recursion needed to express Sum

 – quadratic space

Sum (DLP vs DLPA)
% Order employees by id

precedes(X,Y) :- emp(X,_), emp(Y,_), X<Y.

% Define successor, first and last
succ(X,Y) :- precedes(X,Y), not elementInMiddle(X,Y).
elementInMiddle(X,Y) :- precedes(X,Z), precedes(Z,Y).
first(X) :- emp(X,_), not hasPredecessor(X).
last(X) :- emp(X,_), not hasSuccessor(X).
hasPredecessor(X) :- succ(Y,X).
hasSuccessor(Y) :- succ(Y,X).

% sum salaries recursively
partialSum(X,Sx) :- first(X), emp(X,Sx).
partialSum(Y,S) :- succ(X,Y), partialSum(X,PSx), emp(Y,Sy), S=PSx+Sy.

% select the total
sum(S) :- last(L), partialSum(L,S).

Aggregate atoms
f{S} <* X

S : symbolic set
f : function name among { #count, #sum, #times, #min, #max }
<*: comparison operator in { <, ≤, >, ≥ }

 #count { EmpId : emp(EmpId, male, Skill, Salary) } ≤ 10

The atom is true if the number of male employees does
not exceed 10.

Formal semantics: extension of the notion of answer set; quite
difficult if aggregates are recursive (unstratified).

Problems with the Semantics of
Recursive Aggregates

• Gelfond-Lifschitz reduct differentiates between positive
and negative literals
•Aggregate atoms can be similar to positive AND negative
literals

• #count{a} > 1 is like a positive literal
• #count{a} < 1 is like a negative literal
• #sum over (signed) integers is different from both

•How to deal with aggregate atoms in the reduct?

Novel Definition of Reduct

[Faber, Leone, Pfeifer, JELIA’04]
Reduct PI of P w.r.t. I:
• Delete the rules where a body literal is false

That’s it!

An answer set is an interpretation which is a
minimal model of the reduct.

Novel Definition of Reduct

Theorem: On standard DLP programs the definition of
[Faber,Leone,Pfeifer ‘04] yields precisely the same answer
sets as [Gelfond&Lifschitz ‘91]

• Simpler: Only one condition, rules not altered

• Uniform treatment of positive and negative literals

• Uniform treatment of standard and aggregate literals

• Useful also for standard programs (proofs)!

The case of Aggregates:
Complexity Analysis

Main Decision Problem

[Cautious Reasoning]
Given a DLP program P, and a ground literal A,
 is A true in ALL answer sets of P?

Complexity of aggregates

Theorem
Cautious Reasoning on ground DLP programs with aggregates is Π
P

2 - complete

It seems that the addition of aggregates to DLP comes for free

Are we sure that there is never a computational overhead?
Let’s analyze some language fragments.

Monotonicity of Literals

• Monotone Literals:
 truth for interpretation I implies truth for all J extending I

• Antimonotone Literals:
 truth for interpretation I implies truth for all J included in I

• Nonmonotone Literals:
neither monotone nor antimonotone

- Positive standard literals are monotone
- Negative standard literals are antimonotone
- Aggregate SUM over (possibly negative) integers is nonmonotone

Restrictions on Aggregates

Ms = stratified monotone aggregates
M = full (possibly recursive) monotone aggregates
As = stratified antimonotone aggregates
A = full antimonotone aggregates
Ns = stratified nonmonotone aggregates
N = full nonmonotone aggregates

Complexity of Cautious Reasoning
 for programs with restricted aggregates

ΠP
2ΠP

2coNPcoNPM, A, Ns
ΠP

2ΠP
2ΠP

2ΠP
2N

ΠP
2ΠP

2ΠP
2ΠP

2M, A, N

ΠP
2ΠP

2coNPPM, As, Ns

ΠP
2ΠP

2coNPP{}

not, VVnot{}

[W.Faber, N.Leone, G. Pfeifer 2004 & 2005]

=>

Roadmap
Theoretical Foundations (selected contributions)

Theoretical Properties of DLP
Stable Models and Unfounded Sets

?? Optimization Techniques
Language Extensions

Aggregate Functions
Weak Constraints

Computational Complexity
DLP
Aggregates

Spin-off Companies
DLVSYSTEM
EXEURA

Industry-level Applications
Ontology Representation and Reasoning
Data Integration
Information Extraction
Text Classification

Conclusions

Semantics for Positive Programs

Assume now that Programs are ground (variable-free) and Positive (not - free)

Interpretation I of P: set of atoms of P.
- Atom q is true w.r.t. I if q is in I; otherwise it is false.
- Literal not q is true w.r.t. I if q is not in I; otherwise it is false.

Model: Interpretation satisfying all rules of P.

Stable Model: Minimal model of P (w.r.t. set inclusion).

Semantics for Programs with Negation

Consider general programs (with NOT)

[Gelfond & Lifschitz 1988, 1991]
Reduct PI of P w.r.t. I:

 Delete all rules with a negative false literal (w.r.t. I);
 Delete the negative literals from the bodies of the remaining rules.

A Stable Model of a program P is an interpretation I such that I is a stable model of
PI.

