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We Need to Unify the Two
 The real world is complex and uncertain
 Logic handles complexity
 Probability handles uncertainty



The Goal
 A unified language

 Probabilistic graphical models and
first-order logic are special cases

 Unified inference algorithms
 Unified learning algorithms
 Easy-to-use software
 Broad applicability
 A new kind of programming language



Progress to Date
 Probabilistic logic [Nilsson, 1986]
 Statistics and beliefs [Halpern, 1990]
 Knowledge-based model construction

[Wellman et al., 1992]
 Stochastic logic programs [Muggleton, 1996]
 Probabilistic relational models [Friedman et al., 1999]
 Relational Markov networks [Taskar et al., 2002]
 Etc.
 This talk: Markov logic [Richardson & Domingos, 2006]



Markov Logic
 Syntax: Weighted first-order formulas
 Semantics: Templates for Markov nets 
 Inference: Lifted belief propagation, etc.
 Learning: Voted perceptron, pseudo-

likelihood, inductive logic programming
 Software: Alchemy
 Applications: Information extraction,

NLP, social networks, comp bio, etc.
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Markov Networks
 Undirected graphical models
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Markov Networks
 Undirected graphical models

 Log-linear model:
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First-Order Logic
 Symbols: Constants, variables, functions, predicates

E.g.: Anna, x, MotherOf(x), Friends(x, y)
 Logical connectives: Conjunction, disjunction, 

negation, implication, quantification, etc.
 Grounding: Replace all variables by constants

E.g.: Friends (Anna, Bob)
 World: Assignment of truth values to all ground atoms
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Markov Logic
 A logical KB is a set of hard constraints

on the set of possible worlds
 Let’s make them soft constraints:

When a world violates a formula,
It becomes less probable, not impossible

 Give each formula a weight
(Higher weight  ⇒  Stronger constraint)

( )∑∝ satisfiesit  formulas of weightsexpP(world)



Definition
 A Markov Logic Network (MLN) is a set of 

pairs (F, w) where
 F is a formula in first-order logic
 w is a real number

 Together with a set of constants,
it defines a Markov network with
 One node for each grounding of each predicate in 

the MLN
 One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w



Example: Friends & Smokers



Example: Friends & Smokers

habits.  smoking  similar  have  Friends
cancer.  causes  Smoking



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Two constants: Anna (A) and Bob (B)



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)



Example: Friends & Smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)



Markov Logic Networks
 MLN is template for ground Markov nets
 Probability of a world x:

 Typed variables and constants greatly reduce 
size of ground Markov net

 Functions, existential quantifiers, etc.
 Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x
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Relation to Statistical Models
 Special cases:

 Markov networks
 Markov random fields
 Bayesian networks
 Log-linear models
 Exponential models
 Max. entropy models
 Gibbs distributions
 Boltzmann machines
 Logistic regression
 Hidden Markov models
 Conditional random fields

 Obtained by making all 
predicates zero-arity

 Markov logic allows 
objects to be 
interdependent 
(non-i.i.d.)



Relation to First-Order Logic
 Infinite weights  ⇒  First-order logic
 Satisfiable KB, positive weights ⇒ 

Satisfying assignments = Modes of distribution
 Markov logic allows contradictions between 

formulas
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Inference
 MAP/MPE state

 MaxWalkSAT
 LazySAT

 Marginal and conditional probabilities
 MCMC: Gibbs, MC-SAT, etc.
 Knowledge-based model construction
 Lifted belief propagation
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Lifted Inference
 We can do inference in first-order logic 

without grounding the KB (e.g.: resolution)
 Let’s do the same for inference in MLNs
 Group atoms and clauses into 

“indistinguishable” sets
 Do inference over those
 First approach: Lifted variable elimination

(not practical)
 Here: Lifted belief propagation



Belief Propagation
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Lifted Belief Propagation
 Form lifted network composed of supernodes

and superfeatures
 Supernode: Set of ground atoms that all send and

receive same messages throughout BP
 Superfeature: Set of ground clauses that all send and 

receive same messages throughout BP
 Run belief propagation on lifted network
 Guaranteed to produce same results as ground BP
 Time and memory savings can be huge



Forming the Lifted Network
1. Form initial supernodes

One per predicate and truth value
(true, false, unknown)

2. Form superfeatures by doing joins of their  
supernodes

3. Form supernodes by projecting
superfeatures down to their predicates
Supernode = Groundings of a predicate with same 
number of projections from each superfeature

4. Repeat until convergence



Theorem
 There exists a unique minimal lifted network
 The lifted network construction algo. finds it
 BP on lifted network gives same result as

on ground network



Representing Supernodes
And Superfeatures

 List of tuples: Simple but inefficient
 Resolution-like: Use equality and inequality
 Form clusters (in progress)



Open Questions
 Can we do approximate KBMC/lazy/lifting?
 Can KBMC, lazy and lifted inference be 

combined?
 Can we have lifted inference over both 

probabilistic and deterministic dependencies? 
(Lifted MC-SAT?)

 Can we unify resolution and lifted BP?
 Can other inference algorithms be lifted?
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Learning
 Data is a relational database
 Closed world assumption (if not: EM)
 Learning parameters (weights)

 Generatively
 Discriminatively

 Learning structure (formulas)



Generative Weight Learning
 Maximize likelihood
 Use gradient ascent or L-BFGS
 No local maxima

 Requires inference at each step (slow!)

No. of true groundings of clause i in data

Expected no. true groundings according to model
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Pseudo-Likelihood

 Likelihood of each variable given its 
neighbors in the data  [Besag, 1975]

 Does not require inference at each step
 Consistent estimator
 Widely used in vision, spatial statistics, etc.
 But PL parameters may not work well for

long inference chains
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Discriminative Weight Learning

 Maximize conditional likelihood of query (y) 
given evidence (x)

 Approximate expected counts by counts in 
MAP state of y given x

No. of true groundings of clause i in data

Expected no. true groundings according to model
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wi ← 0
for t ← 1 to T do
    yMAP ← Viterbi(x)
    wi ← wi + η [counti(yData) – counti(yMAP)]
return ∑t wi / T

Voted Perceptron
 Originally proposed for training HMMs 

discriminatively [Collins, 2002]
 Assumes network is linear chain



wi ← 0
for t ← 1 to T do
    yMAP ← MaxWalkSAT(x)
    wi ← wi + η [counti(yData) – counti(yMAP)]
return ∑t wi / T

Voted Perceptron for MLNs
 HMMs are special case of MLNs
 Replace Viterbi by MaxWalkSAT
 Network can now be arbitrary graph



Structure Learning
 Generalizes feature induction in Markov nets
 Any inductive logic programming approach can be 

used, but . . .
 Goal is to induce any clauses, not just Horn
 Evaluation function should be likelihood
 Requires learning weights for each candidate
 Turns out not to be bottleneck
 Bottleneck is counting clause groundings
 Solution: Subsampling



Structure Learning
 Initial state: Unit clauses or hand-coded KB
 Operators: Add/remove literal, flip sign
 Evaluation function: 

Pseudo-likelihood + Structure prior
 Search:

 Beam [Kok & Domingos, 2005]
 Shortest-first [Kok & Domingos, 2005]
 Bottom-up [Mihalkova & Mooney, 2007]
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Alchemy
Open-source software including:
 Full first-order logic syntax
 MAP and marginal/conditional inference
 Generative & discriminative weight learning
 Structure learning
 Programming language features

alchemy.cs.washington.edu



Alchemy Prolog BUGS

Represent-
ation

F.O. Logic + 
Markov nets

Horn 
clauses

Bayes 
nets

Inference Lifted BP, 
SAT, etc.

Theorem 
proving

Gibbs 
sampling

Learning Parameters
& structure

No Params.

Uncertainty Yes No Yes

Relational Yes Yes No
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Applications
 Information extraction*
 Entity resolution
 Link prediction
 Collective classification
 Web mining
 Natural language 

processing

 Computational biology
 Social network analysis
 Robot mapping
 Activity recognition
 Probabilistic Cyc
 CALO
 Etc.

* Markov logic approach won LLL-2005 information
  extraction competition [Riedel & Klein, 2005]



Information Extraction
Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.



Segmentation
Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.
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Entity Resolution
Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent
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Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.
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(pp. 500-505). Boston, MA: AAAI Press.
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State of the Art
 Segmentation

 HMM (or CRF) to assign each token to a field
 Entity resolution

 Logistic regression to predict same field/citation
 Transitive closure

 Alchemy implementation: Seven formulas
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token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
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Formulas

Token(+t,i,c) => InField(i,+f,c)
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Results: Segmentation on Cora
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Results:
Matching Venues on Cora
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Conclusion
 We need to unify learning, logic and 

probability
 Markov logic provides a language for this

 Syntax: Weighted first-order formulas
 Semantics: Features of Markov random fields
 Inference: Lifted belief prop., MaxWalkSAT, etc.
 Learning: Pseudo-likelihood, VP, ILP, etc.

 Growing set of applications
 Open-source software: Alchemy

alchemy.cs.washington.edu


