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We Need to Unify the Two
 The real world is complex and uncertain
 Logic handles complexity
 Probability handles uncertainty



The Goal
 A unified language

 Probabilistic graphical models and
first-order logic are special cases

 Unified inference algorithms
 Unified learning algorithms
 Easy-to-use software
 Broad applicability
 A new kind of programming language



Progress to Date
 Probabilistic logic [Nilsson, 1986]
 Statistics and beliefs [Halpern, 1990]
 Knowledge-based model construction

[Wellman et al., 1992]
 Stochastic logic programs [Muggleton, 1996]
 Probabilistic relational models [Friedman et al., 1999]
 Relational Markov networks [Taskar et al., 2002]
 Etc.
 This talk: Markov logic [Richardson & Domingos, 2006]



Markov Logic
 Syntax: Weighted first-order formulas
 Semantics: Templates for Markov nets 
 Inference: Lifted belief propagation, etc.
 Learning: Voted perceptron, pseudo-

likelihood, inductive logic programming
 Software: Alchemy
 Applications: Information extraction,

NLP, social networks, comp bio, etc.
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Markov Networks
 Undirected graphical models
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 Potential functions defined over cliques
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Markov Networks
 Undirected graphical models

 Log-linear model:
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First-Order Logic
 Symbols: Constants, variables, functions, predicates

E.g.: Anna, x, MotherOf(x), Friends(x, y)
 Logical connectives: Conjunction, disjunction, 

negation, implication, quantification, etc.
 Grounding: Replace all variables by constants

E.g.: Friends (Anna, Bob)
 World: Assignment of truth values to all ground atoms
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Markov Logic
 A logical KB is a set of hard constraints

on the set of possible worlds
 Let’s make them soft constraints:

When a world violates a formula,
It becomes less probable, not impossible

 Give each formula a weight
(Higher weight  ⇒  Stronger constraint)

( )∑∝ satisfiesit  formulas of weightsexpP(world)



Definition
 A Markov Logic Network (MLN) is a set of 

pairs (F, w) where
 F is a formula in first-order logic
 w is a real number

 Together with a set of constants,
it defines a Markov network with
 One node for each grounding of each predicate in 

the MLN
 One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w



Example: Friends & Smokers
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Markov Logic Networks
 MLN is template for ground Markov nets
 Probability of a world x:

 Typed variables and constants greatly reduce 
size of ground Markov net

 Functions, existential quantifiers, etc.
 Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x
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Relation to Statistical Models
 Special cases:

 Markov networks
 Markov random fields
 Bayesian networks
 Log-linear models
 Exponential models
 Max. entropy models
 Gibbs distributions
 Boltzmann machines
 Logistic regression
 Hidden Markov models
 Conditional random fields

 Obtained by making all 
predicates zero-arity

 Markov logic allows 
objects to be 
interdependent 
(non-i.i.d.)



Relation to First-Order Logic
 Infinite weights  ⇒  First-order logic
 Satisfiable KB, positive weights ⇒ 

Satisfying assignments = Modes of distribution
 Markov logic allows contradictions between 

formulas
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Inference
 MAP/MPE state

 MaxWalkSAT
 LazySAT

 Marginal and conditional probabilities
 MCMC: Gibbs, MC-SAT, etc.
 Knowledge-based model construction
 Lifted belief propagation
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Lifted Inference
 We can do inference in first-order logic 

without grounding the KB (e.g.: resolution)
 Let’s do the same for inference in MLNs
 Group atoms and clauses into 

“indistinguishable” sets
 Do inference over those
 First approach: Lifted variable elimination

(not practical)
 Here: Lifted belief propagation



Belief Propagation
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Lifted Belief Propagation
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Lifted Belief Propagation
 Form lifted network composed of supernodes

and superfeatures
 Supernode: Set of ground atoms that all send and

receive same messages throughout BP
 Superfeature: Set of ground clauses that all send and 

receive same messages throughout BP
 Run belief propagation on lifted network
 Guaranteed to produce same results as ground BP
 Time and memory savings can be huge



Forming the Lifted Network
1. Form initial supernodes

One per predicate and truth value
(true, false, unknown)

2. Form superfeatures by doing joins of their  
supernodes

3. Form supernodes by projecting
superfeatures down to their predicates
Supernode = Groundings of a predicate with same 
number of projections from each superfeature

4. Repeat until convergence



Theorem
 There exists a unique minimal lifted network
 The lifted network construction algo. finds it
 BP on lifted network gives same result as

on ground network



Representing Supernodes
And Superfeatures

 List of tuples: Simple but inefficient
 Resolution-like: Use equality and inequality
 Form clusters (in progress)



Open Questions
 Can we do approximate KBMC/lazy/lifting?
 Can KBMC, lazy and lifted inference be 

combined?
 Can we have lifted inference over both 

probabilistic and deterministic dependencies? 
(Lifted MC-SAT?)

 Can we unify resolution and lifted BP?
 Can other inference algorithms be lifted?



Overview
 Motivation
 Background
 Markov logic
 Inference
 Learning
 Software
 Applications
 Discussion



Learning
 Data is a relational database
 Closed world assumption (if not: EM)
 Learning parameters (weights)

 Generatively
 Discriminatively

 Learning structure (formulas)



Generative Weight Learning
 Maximize likelihood
 Use gradient ascent or L-BFGS
 No local maxima

 Requires inference at each step (slow!)

No. of true groundings of clause i in data

Expected no. true groundings according to model
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Pseudo-Likelihood

 Likelihood of each variable given its 
neighbors in the data  [Besag, 1975]

 Does not require inference at each step
 Consistent estimator
 Widely used in vision, spatial statistics, etc.
 But PL parameters may not work well for

long inference chains
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Discriminative Weight Learning

 Maximize conditional likelihood of query (y) 
given evidence (x)

 Approximate expected counts by counts in 
MAP state of y given x

No. of true groundings of clause i in data

Expected no. true groundings according to model
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wi ← 0
for t ← 1 to T do
    yMAP ← Viterbi(x)
    wi ← wi + η [counti(yData) – counti(yMAP)]
return ∑t wi / T

Voted Perceptron
 Originally proposed for training HMMs 

discriminatively [Collins, 2002]
 Assumes network is linear chain



wi ← 0
for t ← 1 to T do
    yMAP ← MaxWalkSAT(x)
    wi ← wi + η [counti(yData) – counti(yMAP)]
return ∑t wi / T

Voted Perceptron for MLNs
 HMMs are special case of MLNs
 Replace Viterbi by MaxWalkSAT
 Network can now be arbitrary graph



Structure Learning
 Generalizes feature induction in Markov nets
 Any inductive logic programming approach can be 

used, but . . .
 Goal is to induce any clauses, not just Horn
 Evaluation function should be likelihood
 Requires learning weights for each candidate
 Turns out not to be bottleneck
 Bottleneck is counting clause groundings
 Solution: Subsampling



Structure Learning
 Initial state: Unit clauses or hand-coded KB
 Operators: Add/remove literal, flip sign
 Evaluation function: 

Pseudo-likelihood + Structure prior
 Search:

 Beam [Kok & Domingos, 2005]
 Shortest-first [Kok & Domingos, 2005]
 Bottom-up [Mihalkova & Mooney, 2007]
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Alchemy
Open-source software including:
 Full first-order logic syntax
 MAP and marginal/conditional inference
 Generative & discriminative weight learning
 Structure learning
 Programming language features

alchemy.cs.washington.edu
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Applications
 Information extraction*
 Entity resolution
 Link prediction
 Collective classification
 Web mining
 Natural language 

processing

 Computational biology
 Social network analysis
 Robot mapping
 Activity recognition
 Probabilistic Cyc
 CALO
 Etc.

* Markov logic approach won LLL-2005 information
  extraction competition [Riedel & Klein, 2005]



Information Extraction
Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.



Segmentation
Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.
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Title
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Entity Resolution
Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.
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Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.
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Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
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State of the Art
 Segmentation

 HMM (or CRF) to assign each token to a field
 Entity resolution

 Logistic regression to predict same field/citation
 Transitive closure

 Alchemy implementation: Seven formulas
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token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
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Types and Predicates

Evidence

token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation)
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token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Types and Predicates

Query



Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+1,+f,c)
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)
   ^ InField(i’,+f,c’) => SameField(+f,c,c’)
SameField(+f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) ^ SameField(f,c’,c”)
   => SameField(f,c,c”)
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

Formulas
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Results: Segmentation on Cora
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Results:
Matching Venues on Cora
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Conclusion
 We need to unify learning, logic and 

probability
 Markov logic provides a language for this

 Syntax: Weighted first-order formulas
 Semantics: Features of Markov random fields
 Inference: Lifted belief prop., MaxWalkSAT, etc.
 Learning: Pseudo-likelihood, VP, ILP, etc.

 Growing set of applications
 Open-source software: Alchemy

alchemy.cs.washington.edu


