
Building a Knowledge Base System
for an Integration of

Logic Programming and Classical Logic

Marc Denecker and Joost Vennekens

December 9, 2008

1 / 70

Introduction

I A celebration for a 20th anniversary
I Stable semantics by Michael Gelfond and Vladimir Lifschitz
I The origin of Answer Set Programming

I A position session — a critique

” All the attractive features of the semantics and the
ASP approach notwithstanding, there are alternative

approaches that are better suited to address KR
challenges.”

I An alternative logic: (FO+Inductive Definitions)

FO(ID)

I Stable semantics
⋂

Well-founded semantics
I Builds on other LP-traditions

I Abductive logic programming
I Deductive databases

2 / 70

Introduction

I A celebration for a 20th anniversary
I Stable semantics by Michael Gelfond and Vladimir Lifschitz
I The origin of Answer Set Programming

I A position session — a critique

” All the attractive features of the semantics and the
ASP approach notwithstanding, there are alternative

approaches that are better suited to address KR
challenges.”

I An alternative logic: (FO+Inductive Definitions)

FO(ID)

I Stable semantics
⋂

Well-founded semantics
I Builds on other LP-traditions

I Abductive logic programming
I Deductive databases

3 / 70

Introduction

I A celebration for a 20th anniversary
I Stable semantics by Michael Gelfond and Vladimir Lifschitz
I The origin of Answer Set Programming

I A position session — a critique

” All the attractive features of the semantics and the
ASP approach notwithstanding, there are alternative

approaches that are better suited to address KR
challenges.”

I An alternative logic: (FO+Inductive Definitions)

FO(ID)

I Stable semantics
⋂

Well-founded semantics
I Builds on other LP-traditions

I Abductive logic programming
I Deductive databases

4 / 70

Introduction

I A celebration for a 20th anniversary
I Stable semantics by Michael Gelfond and Vladimir Lifschitz
I The origin of Answer Set Programming

I A position session — a critique

” All the attractive features of the semantics and the
ASP approach notwithstanding, there are alternative

approaches that are better suited to address KR
challenges.”

I An alternative logic: (FO+Inductive Definitions)

FO(ID)

I Stable semantics
⋂

Well-founded semantics

I Builds on other LP-traditions
I Abductive logic programming
I Deductive databases

5 / 70

Introduction

I A celebration for a 20th anniversary
I Stable semantics by Michael Gelfond and Vladimir Lifschitz
I The origin of Answer Set Programming

I A position session — a critique

” All the attractive features of the semantics and the
ASP approach notwithstanding, there are alternative

approaches that are better suited to address KR
challenges.”

I An alternative logic: (FO+Inductive Definitions)

FO(ID)

I Stable semantics
⋂

Well-founded semantics
I Builds on other LP-traditions

I Abductive logic programming
I Deductive databases

6 / 70

Knowledge Base Systems

Informal semantics of LP

Formal definition of FO(ID)

Knowledge representation with FO(ID)

Implementation: progress report

Conclusion

7 / 70

A Knowledge Base System

Knowledge Base

Inference 2 Inference 3

Inference 4
Inference 1

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base

I Equiped with different forms of inference to solve different
types of tasks.

8 / 70

A Knowledge Base System

Knowledge Base

Inference 2 Inference 3

Inference 4
Inference 1

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base

I Equiped with different forms of inference to solve different
types of tasks.

9 / 70

A Knowledge Base System

Knowledge Base

Inference 2 Inference 3

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base

I Equiped with different forms of inference to solve different
types of tasks.

10 / 70

A Knowledge Base System

Knowledge Base

Model checking Inference 3

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base

I Equiped with different forms of inference to solve different
types of tasks.

11 / 70

A Knowledge Base System

Knowledge Base

Model checking Revision Inference

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base

I Equiped with different forms of inference to solve different
types of tasks.

12 / 70

A Knowledge Base System

Knowledge Base

Model checking Revision Inference

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule
. . .

Updating a schedule

I Manages a declarative Knowledge Base

I Equiped with different forms of inference to solve different
types of tasks.

13 / 70

KBS versus Declarative progamming paradigms

I Declarative programming paradigms: ASP, LP, CLP, . . .
I A declarative language + unique form of inference.
I A declarative program encodes a solution for a problem.

I The KBS-paradigm goes beyond this by allowing multiple
forms of inference

I A KB-theory does not encode a problem
I A KB-theory has no operational semantics
I The KB is only a specification of the problem domain.

I This imposes a strong requirement on a KB-language:
I Human experts need to be able to develop, interpret, maintain

a KB purely on the basis of its declarative semantics.

14 / 70

KBS versus Declarative progamming paradigms

I Declarative programming paradigms: ASP, LP, CLP, . . .
I A declarative language + unique form of inference.
I A declarative program encodes a solution for a problem.

I The KBS-paradigm goes beyond this by allowing multiple
forms of inference

I A KB-theory does not encode a problem
I A KB-theory has no operational semantics
I The KB is only a specification of the problem domain.

I This imposes a strong requirement on a KB-language:
I Human experts need to be able to develop, interpret, maintain

a KB purely on the basis of its declarative semantics.

15 / 70

KBS versus Declarative progamming paradigms

I Declarative programming paradigms: ASP, LP, CLP, . . .
I A declarative language + unique form of inference.
I A declarative program encodes a solution for a problem.

I The KBS-paradigm goes beyond this by allowing multiple
forms of inference

I A KB-theory does not encode a problem
I A KB-theory has no operational semantics
I The KB is only a specification of the problem domain.

I This imposes a strong requirement on a KB-language:
I Human experts need to be able to develop, interpret, maintain

a KB purely on the basis of its declarative semantics.

16 / 70

A requirement on KB-language

In a KBS, the link between a KB-theory and what it states about
the problem domain must be exceptionally clear.

Informal Semantics

Position 1

A strong requirement for KB-language:

I Its informal semantics should be as objective,
clear and precise as possible.

17 / 70

Informal semantics?

I The informal semantics of FO.

I

∀x(Human(x) ⊃ Male(x) ∨ Female(x))

I The informal semantics of this FO sentence is perfectly clear:

Humans are male or female.

FO satisfies the requirement for a KB-language.

18 / 70

Informal semantics?

I The informal semantics of FO.
I

∀x(Human(x) ⊃ Male(x) ∨ Female(x))

I The informal semantics of this FO sentence is perfectly clear:

Humans are male or female.

FO satisfies the requirement for a KB-language.

19 / 70

Informal semantics?

I The informal semantics of FO.
I

∀x(Human(x) ⊃ Male(x) ∨ Female(x))

I The informal semantics of this FO sentence is perfectly clear:

Humans are male or female.

FO satisfies the requirement for a KB-language.

20 / 70

Informal semantics?

I The informal semantics of FO.
I

∀x(Human(x) ⊃ Male(x) ∨ Female(x))

I The informal semantics of this FO sentence is perfectly clear:

Humans are male or female.

FO satisfies the requirement for a KB-language.

21 / 70

Knowledge Base Systems

Informal semantics of LP

Formal definition of FO(ID)

Knowledge representation with FO(ID)

Implementation: progress report

Conclusion

22 / 70

LP as a KB-language?

Informal semantics of LP?

I In LP-literature, the informal semantics of a logic program is
sometimes called its declarative reading.

I In LP, it is a fairly blurred concept.
I If we look back in the history of LP.

I Many studies of formal semantics of LP.
I Only a few authors take position about the informal semantics.

23 / 70

History of LP’s informal semantics

78: Clark
a LP is a definition

NAF-inference rule was added
very useful

”not” is non-derivability operator
the default or autoepistemic view

75: a LP as a set of FO implications

but unsound w.r.t. this FO view

88: Gelfond & Lifschitz

24 / 70

Informal semantics of LP: Definitions versus Defaults?

Two fundamentally different views on a logic program,
Two views on ”not”:

I a logic program as a default/autoepistemic theory
I ”not” as a non-derivability operator

I ”I do not know . . . ”
I ”It is consistent to assume the falsity of . . . ”

I a logic program as a definition
I NAF-inference derives ”not p” only if ¬p is entailed.
I ”not” is classical negation ¬.
I In this view, it is the rule operator that is non-classical.

25 / 70

Informal semantics of LP: Definitions versus Defaults?

Two fundamentally different views on a logic program,
Two views on ”not”:

I a logic program as a default/autoepistemic theory
I ”not” as a non-derivability operator

I ”I do not know . . . ”
I ”It is consistent to assume the falsity of . . . ”

I a logic program as a definition
I NAF-inference derives ”not p” only if ¬p is entailed.
I ”not” is classical negation ¬.
I In this view, it is the rule operator that is non-classical.

26 / 70

Informal semantics of LP

I Both are internally consistent views on the LP-formalism, with
their own merits but . . .

I We embrace the definitional view.

Claim

The definition view yields an informal semantics

I of mathematical precision

I with wider applicability.

I We accept Clark’s informal but not his formal semantics.
I Clark’s completion semantics is a FO-semantics.
I Inductive definitions are not FO-expressible in general.

I E.g. transitive closure.

I What is the right formal semantics?

27 / 70

Informal semantics of LP

I Both are internally consistent views on the LP-formalism, with
their own merits but . . .

I We embrace the definitional view.

Claim

The definition view yields an informal semantics

I of mathematical precision

I with wider applicability.

I We accept Clark’s informal but not his formal semantics.
I Clark’s completion semantics is a FO-semantics.
I Inductive definitions are not FO-expressible in general.

I E.g. transitive closure.

I What is the right formal semantics?

28 / 70

Informal semantics of LP

I Both are internally consistent views on the LP-formalism, with
their own merits but . . .

I We embrace the definitional view.

Claim

The definition view yields an informal semantics

I of mathematical precision

I with wider applicability.

I We accept Clark’s informal but not his formal semantics.
I Clark’s completion semantics is a FO-semantics.
I Inductive definitions are not FO-expressible in general.

I E.g. transitive closure.

I What is the right formal semantics?

29 / 70

Informal semantics of LP

I Both are internally consistent views on the LP-formalism, with
their own merits but . . .

I We embrace the definitional view.

Claim

The definition view yields an informal semantics

I of mathematical precision

I with wider applicability.

I We accept Clark’s informal but not his formal semantics.
I Clark’s completion semantics is a FO-semantics.
I Inductive definitions are not FO-expressible in general.

I E.g. transitive closure.

I What is the right formal semantics?

30 / 70

Inductive definitions in mathematics

The transitive closure TG of a graph
G is defined inductively:
- (x , y) ∈ TG if (x , y) ∈ G ;
- (x , y) ∈ TG if for some vertex z,

(x , z), (z, y) ∈ TG .

We define A |= ϕ by structural induc-
tion:
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A6|=α

(i.e., if not A |= α);

I A definition as a set of informal rules (with negation in body)

I One rule specifies a sufficient condition
I Together, they form a necessary condition.

I More accurately, an inductive definition defines a relation by describing

how to construct it.

I Rules as productions, to be applied iteratively.

I Definitions may have ”parameters” and be very generic.

I A logic program including transitive closure, also specifies the value of G .
I The definition does not. It therefore specifies TG for every ”parameter” G .

31 / 70

Inductive definitions in mathematics

The transitive closure TG of a graph
G is defined inductively:
- (x , y) ∈ TG if (x , y) ∈ G ;
- (x , y) ∈ TG if for some vertex z,

(x , z), (z, y) ∈ TG .

We define A |= ϕ by structural induc-
tion:
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A6|=α

(i.e., if not A |= α);

I A definition as a set of informal rules (with negation in body)

I One rule specifies a sufficient condition
I Together, they form a necessary condition.

I More accurately, an inductive definition defines a relation by describing

how to construct it.

I Rules as productions, to be applied iteratively.

I Definitions may have ”parameters” and be very generic.

I A logic program including transitive closure, also specifies the value of G .
I The definition does not. It therefore specifies TG for every ”parameter” G .

32 / 70

Inductive definitions in mathematics

The transitive closure TG of a graph
G is defined inductively:
- (x , y) ∈ TG if (x , y) ∈ G ;
- (x , y) ∈ TG if for some vertex z,

(x , z), (z, y) ∈ TG .

We define A |= ϕ by structural induc-
tion:
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A6|=α

(i.e., if not A |= α);

I A definition as a set of informal rules (with negation in body)

I One rule specifies a sufficient condition
I Together, they form a necessary condition.

I More accurately, an inductive definition defines a relation by describing

how to construct it.

I Rules as productions, to be applied iteratively.

I Definitions may have ”parameters” and be very generic.

I A logic program including transitive closure, also specifies the value of G .
I The definition does not. It therefore specifies TG for every ”parameter” G .

33 / 70

Inductive definitions in mathematics

The transitive closure TG of a graph
G is defined inductively:
- (x , y) ∈ TG if (x , y) ∈ G ;
- (x , y) ∈ TG if for some vertex z,

(x , z), (z, y) ∈ TG .

We define A |= ϕ by structural induc-
tion:
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A6|=α

(i.e., if not A |= α);

I A definition as a set of informal rules (with negation in body)

I One rule specifies a sufficient condition
I Together, they form a necessary condition.

I More accurately, an inductive definition defines a relation by describing

how to construct it.

I Rules as productions, to be applied iteratively.

I Definitions may have ”parameters” and be very generic.

I A logic program including transitive closure, also specifies the value of G .
I The definition does not. It therefore specifies TG for every ”parameter” G .

34 / 70

Inductive definitions in mathematics

The transitive closure TG of a graph
G is defined inductively:
- (x , y) ∈ TG if (x , y) ∈ G ;
- (x , y) ∈ TG if for some vertex z,

(x , z), (z, y) ∈ TG .

We define A |= ϕ by structural induc-
tion:
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A6|=α

(i.e., if not A |= α);

I A definition as a set of informal rules (with negation in body)

I One rule specifies a sufficient condition
I Together, they form a necessary condition.

I More accurately, an inductive definition defines a relation by describing

how to construct it.

I Rules as productions, to be applied iteratively.

I Definitions may have ”parameters” and be very generic.

I A logic program including transitive closure, also specifies the value of G .
I The definition does not. It therefore specifies TG for every ”parameter” G .

35 / 70

Knowledge Base Systems

Informal semantics of LP

Formal definition of FO(ID)

Knowledge representation with FO(ID)

Implementation: progress report

Conclusion

36 / 70

FO(ID)’s syntax of definitions

Definition

An FO(ID) definition ∆ is a set of definitional rules:

∀x(P(t)← ϕ)

where ϕ is a FO-formula.

I ∆’s defined predicates: predicates in the head;

I ∆’s “parameters”: all other symbols in ∆.

37 / 70

FO(ID)’s semantics of definitions

A language-filosophical thesis

(A parametrized variant of) the well-founded seman-
tics correctly formalizes the common forms of induc-
tive definitions in mathematics.

[Denecker 98, Denecker Bruynooghe Marek 2001, Denecker
Ternovska 2007]

38 / 70

Definition of FO(ID)

Definition

A FO[ID]-theory is a set of FO-sentences and FO(ID)-
definitions.

Claim

FO(ID) satisfies the requirement for a KB-language
(having a clear and precise informal semantics)

39 / 70

Definition of FO(ID)

Definition

A FO[ID]-theory is a set of FO-sentences and FO(ID)-
definitions.

Claim

FO(ID) satisfies the requirement for a KB-language
(having a clear and precise informal semantics)

40 / 70

Knowledge Base Systems

Informal semantics of LP

Formal definition of FO(ID)

Knowledge representation with FO(ID)

Implementation: progress report

Conclusion

41 / 70

FO(ID) for KR: motivation?

I

Position 2

FO is the base KR language. Every interesting KR-
language has a substantial overlap with FO.

I

Position 3

(Inductive) definitions have many applications, not
only in mathematics, but also in software domains and
common sense KR.

I FO(ID):
I a useful combination of complementary language constructs
I a conceptually clean, tight (non-hybric) integration of FO and

LP

42 / 70

FO(ID) for KR: motivation?

I

Position 2

FO is the base KR language. Every interesting KR-
language has a substantial overlap with FO.

I

Position 3

(Inductive) definitions have many applications, not
only in mathematics, but also in software domains and
common sense KR.

I FO(ID):
I a useful combination of complementary language constructs
I a conceptually clean, tight (non-hybric) integration of FO and

LP

43 / 70

FO(ID) for KR: motivation?

I

Position 2

FO is the base KR language. Every interesting KR-
language has a substantial overlap with FO.

I

Position 3

(Inductive) definitions have many applications, not
only in mathematics, but also in software domains and
common sense KR.

I FO(ID):
I a useful combination of complementary language constructs
I a conceptually clean, tight (non-hybric) integration of FO and

LP

44 / 70

FO(ID) for KR: motivation?

I

Position 2

FO is the base KR language. Every interesting KR-
language has a substantial overlap with FO.

I

Position 3

(Inductive) definitions have many applications, not
only in mathematics, but also in software domains and
common sense KR.

I FO(ID):
I a useful combination of complementary language constructs
I a conceptually clean, tight (non-hybric) integration of FO and

LP

45 / 70

Inductive definitions and common sense KR

I ID’s are important in mathematics but are they useful for
common sense KR?

I

Position 4

The concept of inductive definition is a natural, precise
and very useful instance of CWA.

I The CWA principle ”every atom not derived by a rule is false”
is also included in the principle of ID.

I The CWA underlying ID’s is very similar to the form of CWA
explicitly or implicitly used in many ASP applications.

46 / 70

Inductive definitions and common sense KR

I ID’s are important in mathematics but are they useful for
common sense KR?

I

Position 4

The concept of inductive definition is a natural, precise
and very useful instance of CWA.

I The CWA principle ”every atom not derived by a rule is false”
is also included in the principle of ID.

I The CWA underlying ID’s is very similar to the form of CWA
explicitly or implicitly used in many ASP applications.

47 / 70

Inductive definitions and common sense KR

I ID’s are important in mathematics but are they useful for
common sense KR?

I

Position 4

The concept of inductive definition is a natural, precise
and very useful instance of CWA.

I The CWA principle ”every atom not derived by a rule is false”
is also included in the principle of ID.

I The CWA underlying ID’s is very similar to the form of CWA
explicitly or implicitly used in many ASP applications.

48 / 70

Definitional rules as non-monotonic modules

Position 5

Definitional rules provide a useful form of nonmono-
tonic modularity.

I Incrementally building knowledge representations.

I Elaboration tolerance.

49 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID

,Types,Agg,Arit,ParFun,. . .

)

I Types
I Aggregates
I Arithmetic
I Partial functions
I . . .

FO(·)

50 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID

,Types,Agg,Arit,ParFun,. . .

)

I Types
I Aggregates
I Arithmetic
I Partial functions
I . . .

FO(·)

51 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID,Types

,Agg,Arit,ParFun,. . .

)

I Types

I Aggregates
I Arithmetic
I Partial functions
I . . .

FO(·)

52 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID,Types,Agg

,Arit,ParFun,. . .

)

I Types
I Aggregates

I Arithmetic
I Partial functions
I . . .

FO(·)

53 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID,Types,Agg,Arit

,ParFun,. . .

)

I Types
I Aggregates
I Arithmetic

I Partial functions
I . . .

FO(·)

54 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID,Types,Agg,Arit,ParFun

,. . .

)

I Types
I Aggregates
I Arithmetic
I Partial functions

I . . .

FO(·)

55 / 70

Turning FO(ID) into a KB-language

I FO(ID) is not nearly “expressive” enough for a compact and
modular representation of domain knowledge.

I ⇒ FO(ID,Types,Agg,Arit,ParFun,. . .)

I Types
I Aggregates
I Arithmetic
I Partial functions
I . . .

FO(·)

56 / 70

Knowledge Base Systems

Informal semantics of LP

Formal definition of FO(ID)

Knowledge representation with FO(ID)

Implementation: progress report

Conclusion

57 / 70

Implementation of KBS

Forms of inference under development:

I Model generation: the IDP system

I Approximate reasoning (KR 2008)

I Revision inference

58 / 70

The IDP system

[Wittocx,Mariën,Denecker 2008]

I Its purpose : generate models for a FO(·) theory with a given
finite domain D.

I Technology: grounding + SAT + ASP technology
I Incorporating state-of-the-art stable semantics algorithms in

MiniSat.

I Results:
I An Answer Set Programming system using FO(·)
I A rich input language

I Currently the only model generation for full first-order logic
I plus ID’s, Types, Agg, Arithmetic, partial functions,

I According to our tests, the fastest ASP system.

59 / 70

The IDP system

[Wittocx,Mariën,Denecker 2008]

I Its purpose : generate models for a FO(·) theory with a given
finite domain D.

I Technology: grounding + SAT + ASP technology
I Incorporating state-of-the-art stable semantics algorithms in

MiniSat.

I Results:
I An Answer Set Programming system using FO(·)
I A rich input language

I Currently the only model generation for full first-order logic
I plus ID’s, Types, Agg, Arithmetic, partial functions,

I According to our tests, the fastest ASP system.

60 / 70

The IDP system

[Wittocx,Mariën,Denecker 2008]

I Its purpose : generate models for a FO(·) theory with a given
finite domain D.

I Technology: grounding + SAT + ASP technology
I Incorporating state-of-the-art stable semantics algorithms in

MiniSat.

I Results:
I An Answer Set Programming system using FO(·)
I A rich input language

I Currently the only model generation for full first-order logic
I plus ID’s, Types, Agg, Arithmetic, partial functions,

I According to our tests, the fastest ASP system.

61 / 70

LaSh’08 experiments

0

50

100

150

200

250

tim
e

(s
)

0 5 10 15 20 25 30 35

instances solved

GidL/MiniSat(ID)
psgrnd/aspps
MXG/MXC
Lparse/Clasp
DLV
Clingo

62 / 70

Knowledge Base Systems

Informal semantics of LP

Formal definition of FO(ID)

Knowledge representation with FO(ID)

Implementation: progress report

Conclusion

63 / 70

Conclusion

Why caring about FO(ID)?

I For the elegance and generality of its syntax.
I For the clarity and precision of its informal semantics

I FO(ID) can be taught without explaining its formal semantics.

I For the many occurrences of definitions in applications
I For efficiency (in the long run)

I Technology of the SAT and SMT communities.

I Integrating LP with FO is necessary, in the long run.
I To explain the role and contribution of LP to the larger KR

community.
I For the unity and coherence of our science.

64 / 70

Conclusion

Why caring about FO(ID)?

I For the elegance and generality of its syntax.
I For the clarity and precision of its informal semantics

I FO(ID) can be taught without explaining its formal semantics.

I For the many occurrences of definitions in applications
I For efficiency (in the long run)

I Technology of the SAT and SMT communities.

I Integrating LP with FO is necessary, in the long run.
I To explain the role and contribution of LP to the larger KR

community.
I For the unity and coherence of our science.

65 / 70

Conclusion

Why caring about FO(ID)?

I For the elegance and generality of its syntax.
I For the clarity and precision of its informal semantics

I FO(ID) can be taught without explaining its formal semantics.

I For the many occurrences of definitions in applications
I For efficiency (in the long run)

I Technology of the SAT and SMT communities.

I Integrating LP with FO is necessary, in the long run.
I To explain the role and contribution of LP to the larger KR

community.
I For the unity and coherence of our science.

66 / 70

Relation to other LP formalisms

FO(ID) is continuing other traditionFO(ID) is continuing other
traditions in LP: s in LP:

I LP formalisms where the definition view is fitting:

I Abductive Logic Programming
I Deductive databases

I These formally correspond to fragments of FO(ID)

67 / 70

FO(ID) and ASP side by side

Although ASP and FO(ID) are conceptually very different, in
practical use they are quite similar.
Hamiltonian path

FO(ID): ASP
vertex(a)←
...

ff 
edge(a, b)←
...

ff
vertex(a)← edge(a, b)←
... ...8>><>>:

∀X , Y (reached(Y)←
start(X) ∧ in(X , Y))

∀X , Y (reached(Y)←
reached(X) ∧ in(X , Y))

9>>=>>;
goodfor˘

start(a)←
¯

reached(Y)←
start(X), in(X , Y)

reached(Y)←
reached(X), in(X , Y)

in(X , Y)← not out(X , Y)
out(X , Y)← not in(X , Y)
start(a)←

∀X , Y (in(X , Y) ⊃ edge(X , Y))
∀X (vertex(X) ⊃ reached(X))
∀X , Y , Z ((in(Y , X) ∧ in(Z , X)) ⊃ (Y = Z))
∀X , Y , Z ((in(X , Y) ∧ in(X , Z)) ⊃ (Y = Z))

⊥ ← in(X , Y), not edge(X , Y)
⊥ ← vertex(X), not reached(X)
⊥ ← in(Y , X), in(Z , X), not Y = Z
⊥ ← in(X , Y), in(X , Z), not Y = Z

68 / 70

Confusion about well-founded semantics

I Mismatch between well-founded semantics and FO

I A LP has a unique, three-valued well-founded model which
seems a bad fit with FO’s multiple 2-valued models.

I (As opposed to stable semantics, which can have multiple
2-valued stable models.)

I Solution:
I The parametrised version of well-founded semantics does not

fix the interpretation of the parameters of a definition, and
therefore allows multiple models.

I Three-valued well-founded models are not accepted, only
2-valued models.

69 / 70

Limits

I In mathematics, not every set of informal rules specifies a
correct definition:

We define A |= ϕ by structural induction:

I . . .

I A |= ψ if A |= ψ ∧ φ.

I A |= ψ if A 6|= ¬ψ.

I Mathematically unacceptable: this is not structural induction
because it defines satisfaction of formulas in terms of
satisfaction of larger formulas.

I It is this type of definitions for which the formal versions have
3-valued well-founded semantics.

I In FO(ID) we do the same as mathematicians: we reject the
definition. If IDP discovers that a definition has a 3-valued
WFM, it writes a error message.

70 / 70

	Knowledge Base Systems
	Informal semantics of LP
	Formal definition of FO(ID)
	Knowledge representation with FO(ID)
	Implementation: progress report
	Conclusion

